Decay characteristics and erosion-related transport of glyphosate in Chinese loess soil under field conditions.
نویسندگان
چکیده
UNLABELLED The decay characteristics and erosion-related transport of glyphosate and aminomethylphosphonic acid (AMPA) were monitored for 35 d at different slope gradients and rates of application in plots with loess soil on the Loess Plateau, China. The initial glyphosate decayed rapidly (half-life of 3.5d) in the upper 2 cm of soil following a first-order rate of decay. AMPA content in the 0-2 cm soil layer correspondingly peaked 3d after glyphosate application and then gradually decreased. The residues of glyphosate and AMPA decreased significantly with soil depth (p<0.05) independently of the slope inclination and application rate. About 0.36% of the glyphosate initially applied was transported from plots after one erosive rain 2d after the application. Glyphosate and AMPA concentrations in runoff were low while the contents in the sediment were much higher than in the upper 2 cm of the soil. CAPSULE Although the rate of glyphosate decay is rapid in Chinese loess soil, the risks of glyphosate and AMPA need to be taken into account especially in the area with highly erosive rainfall.
منابع مشابه
Vertical root distribution and root cohesion of typical tree species on the Loess Plateau, China
Black locust (Robinia pseudoacacia L.) and Chinese pine (Pinus tabulaeformis Carr.) are two woody plants that are widely planted on the Loess Plateau for controlling soil erosion and land desertification. In this study, we conducted an excavation experiment in 2008 to investigate the overall vertical root distribution characteristics of black locust and Chinese pine. We also performed triaxial ...
متن کاملRainfall Characteristics of the Liudaogou Catchment on the Northern Loess Plateau of China
The objectives of this study were to understand the rainfall characteristics of thewind-water erosion crisscross region on the northern Loess Plateau, China, to provide basisfor the studies on mitigation of soil erosion, estimation on surface water resources andlocal hydrological circle, etc. The Liudaogou Catchment with representative climatic andhydrologic conditions of wind-water erosion cri...
متن کاملModerate topsoil erosion rates constrain the magnitude of the erosion-induced carbon sink and agricultural productivity losses on the Chinese Loess Plateau
Despite a multitude of studies, overall erosion rates as well as the contribution of different erosion processes on Chinese Loess Plateau (CLP) remain uncertain, which hampers a correct assessment of the impact of soil erosion on carbon and nutrient cycling as well as on crop productivity. In this paper we used a novel approach, based on field evidence, to reassess erosion rates on the CLP befo...
متن کاملSpatial Analysis on Surface Deformation by Soil Erosion in the Chinese Loess Plateau Using Insar Techniques
Monitoring the surface deformation over the loess hills could help us understand the dynamics of soil erosion, the extent of anthropogenic impacts, and the mitigation methods for the potential damage to local ecosystems, agricultural production, socioeconomic infrastructure, water quality, and air quality in the Loess Plateau and the surrounding areas. The objectives of this study were to compr...
متن کاملChanges in soil organic carbon induced by tillage and water erosion on a steep cultivated hillslope in the Chinese Loess Plateau from 1898–1954 and 1954–1998
[1] The fate of soil organic carbon (SOC) transported and redistributed by erosion over steep agricultural landscapes is uncertain. The effect of topography, slope, and slope position on SOC redistribution must be considered. Our objectives were to (1) determine the spatial patterns of both tillage and water erosion-induced SOC redistribution, (2) evaluate the compensating effects of tillage-in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Science of the total environment
دوره 530-531 شماره
صفحات -
تاریخ انتشار 2015